Menu

Dairy Products And Health Concerns – Part 2

This is the Part 2 of the Dairy Products And Health Concerns article. If you missed the Part 1, please click here

4. Lactose Intolerance

Lactose intolerance is common among many populations, affecting approximately 95 percent of Asian-Americans, 74 percent of Native Americans, 70 percent of African-Americans, 53 percent of Mexican-Americans, and 15 percent of Caucasians.33 Symptoms, which include gastrointestinal distress, diarrhea, and flatulence, occur because these individuals do not have the enzyme lactase to digest the milk sugar lactose. When digested, the breakdown products of lactose are two simple sugars: glucose and galactose. Nursing children have active enzymes that break down galactose, but as we age, many of us lose much of this capacity.34 Due to the common nature of this condition, and in order to avoid these uncomfortable side effects, milk consumption is not recommended.

5. Contaminants

Milk contains contaminants that range from hormones to pesticides. Milk naturally contains hormones and growth factors produced within a cow’s body. In addition, synthetic hormones such as recombinant bovine growth hormone are commonly used in cows to increase the production of milk.35 Once introduced into the human body, these hormones may affect normal hormonal function.

When treating cows for conditions such as mastitis, or inflammation, of the mammary glands, antibiotics are used, and traces of these antibiotics have occasionally been found in samples of milk and dairy products. This treatment is used frequently, because mastitis is a very common condition in cows, due to dairy product practices which have cows producing more milk than nature intended.

Pesticides, polychlorinated biphenyls (PCBs), and dioxins are other examples of contaminants found in milk. Dairy products contribute to one-fourth to one-half of the dietary intake of total dioxins.36 All of these toxins do not readily leave the body and can eventually build to harmful levels that may affect the immune, reproductive, and the central nervous systems. Moreover, PCBs and dioxins have also been linked to cancer.37

Other contaminants often introduced during processing of milk products include melamine, often found in plastics, which negatively affects the kidneys and urinary tract due to their high nitrogen content,38 and carcinogenic toxins including aflatoxins. These are additionally dangerous because they are not destroyed in pasteurization.39

6. Milk Proteins and Diabetes

Insulin-dependent (type 1 or childhood-onset) diabetes is linked to consumption of dairy products in infancy.40 A 2001 Finnish study of 3,000 infants with genetically increased risk for developing diabetes showed that early introduction of cow’s milk increased susceptibility to type 1 diabetes.41 In addition, the American Academy of Pediatrics observed up to a 30 percent reduction in the incidence of type 1 diabetes in infants who avoid exposure to cow’s milk protein for at least the first three months of their lives.42

Dairy products, health

Dairy free

7. Health Concerns for Children and Infants

Milk proteins, milk sugar, fat, and saturated fat in dairy products pose health risks for children and encourage the development of obesity, diabetes, and heart disease. While low-fat milk is often recommended for decreasing obesity risk, a study published in the Archives of Disease in Childhood showed that children who drank 1 percent or skim milk, compared with those who drank full-fat milk, were not any less likely to be obese.43 Moreover, a current meta-analysis found no support for the argument that increasing dairy product intake will decrease body fat and weight over the long term (>1 year).44

For infants, the consumption of cow’s milk is not recommended. The American Academy of Pediatrics recommends that infants below 1 year of age not be given whole cow’s milk,45 as iron deficiency is more likely due to the low amount of iron found in cow’s milk as compared with human breast milk.46 Colic is an additional concern with milk consumption. Up to 28 percent of infants suffer from colic during the first month of life.47nPediatricians learned long ago that cow’s milk was often the reason. We now know that breastfeeding mothers can have colicky babies if the mothers consume cow’s milk. The cow’s antibodies can pass through the mother’s bloodstream, into her breast milk, and to the baby.48,49

Additionally, food allergies appear to be common results of cow’s milk consumption, particularly in children.50,51 Cow’s milk consumption has also been linked to chronic constipation in children.52

Conclusions

Milk and dairy products are not necessary in the diet and can, in fact, be harmful to health. It is best to consume a healthful diet of grains, fruits, vegetables, legumes, and fortified foods and fresh juices. These nutrient-dense foods can help you meet your calcium, potassium, riboflavin, and vitamin D requirements with ease—and without facing the health risks associated with dairy product consumption.

Solution

We talked about the problem – dairy products; we explained what negative impact these products have on our health; and now what we can do about it?

Here is your hit list of dairy alternatives (mainly raw food sources as this is what we are promoting to achieve the best health):

  1. Instead of Milk – Try nuts & seeds milk such as almond, cashew, coconut milk or poppy seed milk etc.
  2. Instead of Yoghurt/Dairy desserts – Try coconut yoghurt with dairy free probiotic culture to ferment the yoghurt
  3. Instead of Cheese – Try raw cashew or almond cheese
  4. Instead of Ice-cream – Try raw ice creams made from frozen fruits and nuts milk
  5. Instead of Milk Chocolate – Try dark raw chocolate or carob chocolate
  6. Instead of Butter or spreads – Try olive oil, flax oil, macadamia oil, sesame oil, nut butters or spreads, avocado, tahini,
  7. Instead of Buttermilk, Butterfat – Try ghee, coconut milk/cream
dairy products, health

Dairy Free Raw Desert

References:

1. Feskanich D, Willett WC, Colditz GA. Calcium, vitamin D, milk consumption, and hip fractures: a prospective study among postmenopausal women. Am J Clin Nutr. 2003;77:504–511.
2. Lanou AJ, Berkow SE, Barnard ND. Calcium, dairy products, and bone health in children and young adults: a reevaluation of the evidence.Pediatrics. 2005;115:736–743.
3. Sonneville KR, Gordon CM, Kocher MS, Pierce LM, Ramappa A, Field AE. Vitamin D, calcium, and dairy intakes and stress fractures among female adolescents. Arch Pediatr Adolesc Med. 2012;166:595-600.
4. Reid DM, New SA. Nutritional influences on bone mass. Proceed Nutr Soc. 1997;56:977–987.
5. Lin P, Ginty F, Appel L, et al. The DASH diet and sodium reduction improve markers of bone turnover and calcium metabolism in adults. J Nutr. 2001;133:3130–3136.
6. Tucker KL, Hannan MR, Chen H, Cupples LA, Wilson PWF, Kiel DP. Potassium, magnesium, and fruit and vegetable intakes are associated with greater bone mineral density in elderly men and women. Am J Clin Nutr. 1999;69:727–736.
7. National Institutes of Health. NIH Osteoporosis and Related Bone Diseases National Resource Center. Calcium and Vitamin D: Important at Every Age. Available at: http://www.niams.nih.gov/Health_Info/Bone/Bone_Health/Nutrition/. Accessed September 24, 2013.
8. Prince R, Devine A, Dick I, et al. The effects of calcium supplementation (milk powder or tablets) and exercise on bone mineral density in postmenopausal women. J Bone Miner Res. 1995;10:1068–1075.
9. Going S, Lohman T, Houtkooper L, et al. Effects of exercise on bone mineral density in calcium-replete postmenopausal women with and without hormone replacement therapy. Osteoporos Int. 2003;14:637–643.
10. Lunt M, Masaryk P, Scheidt-Nave C, et al. The effects of lifestyle, dietary dairy intake and diabetes on bone density and vertebral deformity prevalence: the EVOS study. Osteoporos Int. 2001;12:688–698.
11. Lloyd T, Beck TJ, Lin HM, et al. Modifiable determinants of bone status in young women. Bone. 2002;30:416–421.
12. Holick MF, Garabedian M. Vitamin D: photobiology, metabolism, mechanism of action, and clinical applications. In: Favus MJ, ed. Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism. 6th ed. Washington, DC: American Society for Bone and Mineral Research; 2006:129-137.
13. Holick M. The vitamin D epidemic and its health consequences. J Nutr. 2005;135:2739S–2748S.
14. Zhang R, Naughton D. Vitamin D in health and disease: current perspectives. Nutr J. 2010;9:65.
15. Warensjo E, Jansson JH, Berglund L, et al. Estimated intake of milk fat is negatively associated with cardiovascular risk factors and does not increase the risk of a first acute myocardial infarction. Br J Nutr. 2004;91:635–642.
16. Szeto YT, Kwok TC, Benzie IF. Effects of a long-term vegetarian diet on biomarkers of antioxidants status and cardiovascular disease risk.Nutrition. 2004;20:863–866.
17. Ornish D, Brown SE, Scherwitz LW, et al. Can lifestyle changes reverse coronary heart disease? Lancet. 1990;336:129–133.
18. Qin L, Xu J, Wang P, Tong J, Hoshi K. Milk consumption is a risk factor for prostate cancer in Western countries: evidence from cohort studies.Asia Pac J Clin Nutr. 2007;16:467–476.
19. Song Y, Chavarro JE, Cao Y, et al. Whole milk intake is associated with prostate cancer-specific mortality among U.S. male physicians. J Nutr. 2013;143:189-196.
20. Chan JM, Stampfer MJ, Ma J, Gann PH, Gaziano JM, Giovannucci E. Dairy products, calcium, and prostate cancer risk in the Physicians’ Health Study. Am J Clin Nutr. 2001;74:549-554.
21. Kroenke CH, Kwan ML, Sweeney C, Castillo A, Caan Bette J. High-and low-fat dairy intake, recurrence, and mortality after breast cancer diagnosis. J Natl Cancer Inst. 2013;105:616-623.
22. Voskuil DW, Vrieling A, van’t Veer LJ, Kampman E, Rookus MA. The insulin-like growth factor system in cancer prevention: potential of dietary intervention strategies. Cancer Epidemiol Biomarkers Prev.2005;14:195–203.
23. Cadogan J, Eastell R, Jones N, Barker ME. Milk intake and bone mineral acquisition in adolescent girls: randomised, controlled intervention trial. BMJ. 1997;315:1255–1260.
24. Qin LQ, He K, Xu JY. Milk consumption and circulating insulin-like growth factor-I level: a systematic literature review. Int J Food Sci Nutr. 2009;60:330-340.
25. Cohen P. Serum insulin-like growth factor-I levels and prostate cancer risk—interpreting the evidence. J Natl Cancer Inst. 1998;90:876–879.
26. Chan JM, Stampfer MJ, Giovannucci E, et al. Plasma insulin-like growth factor-1 and prostate cancer risk: a prospective study. Science. 1998;279:563–565.
27. Chan JM, Stampfer MJ, Ma J, Gann PH, Gaziano JM, Giovannucci E. Dairy products, calcium, and prostate cancer risk in the Physicians’ Health Study. Am J Clin Nutr. 2001;74:549–554.
28. Tseng M, Breslow RA, Graubard BI, Ziegler RG. Dairy, calcium and vitamin D intakes and prostate cancer risk in the National Health and Nutrition Examination Epidemiologic Follow-up Study cohort. Am J Clin Nutr. 2005;81:1147–1154.
29. Farlow DW, Xu X, Veenstra TD. Quantitative measurement of endogenous estrogen metabolites, risk-factors for development of breast cancer, in commercial milk products by LC-MS/MS. J Chromatogr B. 2009;877:1327-1334.
30. Cramer DW, Greenberg ER, Titus-Ernstoff L, et al. A case-control study of galactose consumption and metabolism in relation to ovarian cancer. Cancer Epidemiol Biomarkers Prev. 2000;9:95–101.
31. Larsson SC, Bergkvist L, Wolk A. Milk and lactose intakes and ovarian cancer risk in the Swedish Mammography Cohort. Am J Clin Nutr. 2004;80:1353–1357.
32. Kushi LH, Mink PJ, Folsom AR, et al. Prospective study of diet and ovarian cancer. Am J Epidemiol. 1999;149:21–31.
33. Bertron P, Barnard ND, Mills M. Racial bias in federal nutrition policy, part I: the public health implications of variations in lactase persistence. J Natl Med Assoc. 1999;91:151–157.
34. Swallow DM. Genetics of lactase persistence and lactose intolerance.Annu Rev Genet. 2003;37:197–219.
35. Outwater JL, Nicholson A, Barnard N. Dairy products and breast cancer: the IGF- 1, estrogen, and bGH hypothesis. Med Hypothesis. 1997;48:453–461.
36. Bhandari SD, Schmidt RH, Rodrick GE. Hazards resulting from environmental, industrial, and agricultural contaminants. In: Schmidt RH, Rodrick GE, eds. Food Safety Handbook. Hoboken, N.J.: John Wiley & Sons, Inc.; 2005:291–321.
37. Baars AJ, Bakker MI, Baumann RA, et al. Dioxins, dioxin-like PCBs and nondioxin- like PCBs in foodstuffs: occurrence and dietary intake in the Netherlands. Toxicol Lett. 2004;151:51–61.
38. Fischer WJ, Schilter B, Tritscher AM, Stadler RH. Contaminants of milk and dairy products: contamination resulting from farm and dairy practices. In: Fuquay JW, ed. Encyclopedia of Dairy Sciences. 2nd ed. San Diego, CA: Academic Press; 2011:887–897.
39. Prandini A, Tansini G, Sigolo S, Filippi L, Laporta M, Piva G. On the occurrence of aflatoxin M1 in milk and dairy products. Food Chem Toxicol. 2009;47:984–991.
40. Saukkonen T, Virtanen SM, Karppinen M, et al. Significance of cow’s milk protein antibodies as risk factor for childhood IDDM: interaction with dietary cow’s milk intake and HLA-DQB1 genotype. Childhood Diabetes in Finland Study Group. Dibetologia. 1998;41:72–78.
41. Kimpimaki T, Erkkola M, Korhonen S, et al. Short-term exclusive breastfeeding predisposes young children with increased genetic risk of type I diabetes to progressive beta-cell autoimmunity. Diabetologia. 2001;44:63–69.
42. Eidelman AI, Schanler RJ. Policy statement: breastfeeding and the use of human milk. From the American Academy of Pediatrics. Pediatrics. 2012;129:827–841.
43. Scharf RJ, Demmer RT, DeBoer MD. Longitudinal evaluation of milk type consumed and weight status in preschoolers. Arch Dis Child. 2013; 98:335-340.
44. Chen M, Pan A, Malik VS, Hu FB. Effects of dairy intake on body weight and fat: a meta-analysis of randomized controlled trials. Am J Clin Nutr. 2012;96:735-747.
45. Gartner LM, Morton J, Lawrence RA, et al. Breastfeeding and the use of human milk. Pediatrics. 2005;115:496–506.
46. Pennington JAT, Douglass JS. Bowes and Church’s Food Values of Portions Commonly Used. 18th ed. Baltimore, MD: Lippincott Williams & Wilkins; 2005.
47. Lucassen PL, Assendelft WJ, van Eijk JT, Gubbels JW, Douwes AC, van Geldrop WJ. Systematic review of the occurrence of infantile colic in the community. Arch Dis Child. 2001;84:398–403.
48. Jarvinen KM, Makinen-Kiljunen S, Suomalainen H. Cow’s milk challenge through human milk evoked immune responses in infants with cow’s milk allergy. J Pediatr. 1999;135:506–512.
49. Paronen J, Bjorksten B, Hattevig G, Akerblom HK, Vaarala O. Effect of maternal diet during lactation on development of bovine insulin-binding antibodies in children at risk for allergy. J Allergy Clin Immunol. 2000;106:302–306.
50. Sampson HA. Food allergy. Part 1: immunopathogenesis and clinical disorders. J Allergy Clin Immunol. 2004;113:805–819.
51. Host A. Frequency of cow’s milk allergy in childhood. Ann Allergy Asthma Immunol. 2002;89(6 Suppl 1):33–37.
52. Iacono G, Cavataio F, Montalto G, et al. Intolerance of cow’s milk and chronic constipation in children. N Engl J Med. 1998;339:1100–1104.
7 Comments
  1. Trinity August 19, 2014 / Reply
  2. Alexandra August 19, 2014 / Reply
    • Raw Eva August 20, 2014 / Reply
  3. Annabelle August 19, 2014 / Reply
  4. Chloe August 20, 2014 / Reply
  5. George August 22, 2014 / Reply
    • Raw Eva August 23, 2014 / Reply

Leave a Reply

Your email address will not be published. Required fields are marked *